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Cyber Physical systemsCybe ys ca syste s

 Krogh et al 2008 : Krogh et al., 2008 :
Cyber-Physical Systems: integration of physical systems

with networked computingwith networked computing

 Wireless sensor networks are expected to be an
important infrastructure for gathering andp g g
exchange physical information
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OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer : digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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Long term objectives for aeronautic Long term objectives for aeronautic 
systemssystems

 Eco-efficiency Eco efficiency
 Greener systems
 Lowest carbon emissions
 Less weight
 Higher performance
 C t ffi i Cost efficiency
 Passenger comfort
 Global system challenge global system solution Global system challenge  global system solution

 Time to market Time to market
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Target applications for cyberTarget applications for cyber--physical physical 
ttsystemssystems

 Flight test instrumentation
 Pilot – crew communications Pilot crew communications
 Structure Health Monitoring
 In-flight tests In flight tests
 In flight Entertainment – Wireless Cabin
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Target applications for cyberTarget applications for cyber--physical physical 
ttsystemssystems

 Wireless flight test instrumentation Wireless flight test instrumentation
 Long term research
Weight problem  eco-efficency green systems  wireless
 Set-up the system: sensors, communication, power
 Safety and security – major problems

 Wireless pilot – crew communications
 Wireless In flight Entertainment – Wireless Cabin

 Audio et video transmissions
 Internet on board
 Easy reconfigurability of the cabin Easy reconfigurability of the cabin
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Structure Health MonitoringStructure Health Monitoring
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Hard landing problemHard landing problemHard landing problemHard landing problem

 Goals: Reduce aircraft schedule interrupts by:
 Reducing number of false reporting hard landings
 Aiding the maintenance process

 Current process
 Pilot initiate inspection 
 Large number of false reports Large number of false reports

 Process with structure health monitoring
 Pilot initiate inspection
 Flight parameters and structure health monitoring sensor information will be used to 

predict load information in critical structure areas
 R d d i t ti Recommended maintenance action
 Aid maintenance process
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Structure health monitoring benefitsStructure health monitoring benefitsStructure health monitoring benefitsStructure health monitoring benefits

 Reduce maintenance effort
 Increase aircraft availability

 Component history record
 Predictive diagnosis g

 Wired : weight problem and time deployment problem Wired : weight problem and time deployment problem
 Green systems : wireless

 Independent instrumentation
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SHM system requirementsSHM system requirementsSHM system requirementsSHM system requirements
 Low or medium data rate, low power nodes
 High number of nodes, different kind of sensors
 Synchronization measurements
 Able to connect to aircraft network (AFDX or Ethernet) Able to connect to aircraft network (AFDX or Ethernet)
 No interferences with passenger equipment

 Difficulty to use COTS :
 Medium numbers of nodes 
 Not Deterministic 
 Without Synchronization 
 Interferences with passenger equipment Interferences with passenger equipment
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Far futureFar futureFar future Far future 
 In the far future – smart materials In the far future smart materials,

composite materials self –healing !
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Aeronautic In Flight Tests Applicationg pp
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Aeronautic in flight tests objectivesAeronautic in flight tests objectives

 Needs to dispose data describing the behavior of aircraft Needs to dispose data describing the behavior of aircraft
before commercialization

 Decrease the weight Decrease the weight 
 Decrease the cost of the system (cables)
 Decrease the cost and the complexity of the system Decrease the cost and the complexity of the system 

deploying

 The wireless cyber-physical system will replace the existing 
test equipments whose sensors are still connected by wiresy

 Wireless communications solve many problem for the 
end user but induce strong innovative developments
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In flight testsIn flight testsIn flight testsIn flight tests

•Real time measurement of the 
wings pressure profile

•Real time description of the 
behavior  of mechanical structure

• Verifying and validating results of 
virtual wind tunnels model
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Satellite ground test applicationsSatellite ground test applicationsg ppg pp

 Real time description of the Real time description of the
behavior of mechanical
structure such as satellites
d i d i t tduring dynamic tests.

 Gather the structure Gather the structure
deformation at different points
where strain gauges and
accelerometers areaccelerometers are
implemented

ICONS 2010 – J.Henaut, D.Dragomirescu and al, “Validation of the MB-OFDM 
Modulation for High Data Rate WSN for Satellite Ground Testing”
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In flight tests In flight tests ––challenges of the system challenges of the system 
(1/2)(1/2)(1/2)(1/2)

 High number of points of measure  High data rate
 Frequently updating of the measure

 No data loss can be tolerated (low BER requested) No data loss can be tolerated (low BER requested)         

 Strong channel coding and efficient transmission in harsh environment

 No power sources on the wings

 Low power nodes

 Gathering data in real time to a central PC in the plane connected to the 
Ethernet/AFDX busEthernet/AFDX bus 
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In flight tests In flight tests ––challenges of the system challenges of the system 
(2/2)(2/2)(2/2)(2/2)

 No interference with critical systems          Very low radiating power: UWB

 Precise identification of each sensor
 P i h i ti f th ll Precise synchronization of the all sensor measures

 Deterministic MAC layer with synchronization algorithm Deterministic MAC layer with synchronization algorithm

ICN2010: T. Beluch, D. Dragomirescu et 
al. “Cross-layered Synchronization 

Protocol forProtocol for
Wireless Sensor Networks”

18ICONS 2010



InIn--flight Test System Requirementsflight Test System Requirementsg y qg y q

 System requirements : System requirements :
 Low power nodes, High number of nodes, High data rate
 Real-time
Measurements synchronization for all the sensors
 Connected to the cabin to a central PC 

 Impossible to reuse COTS:
 Low and medium data rate
 Not real time systems Not real-time systems, 
 Medium numbers of nodes 
 Not Deterministic 
 Without Synchronization 
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In flight Entertainment
Wireless Cabin
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IFE systemIFE system -- the constraintsthe constraintsIFE system IFE system the constraintsthe constraints
 Technologies authorized in major countriesg j

 Wireless system has to prove it works as well as the wired one (ex : reliability) 

 Reduce onboard system weight size power Reduce onboard system weight, size, power…

 Use only standardized devices (and COTS if available)

 Keep passengers comfortableKeep passengers comfortable

 Financial efficiency = 12 h flight by day by aircraft.Financial efficiency = 12 h flight by day by aircraft.
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Wireless IFE Requirementsq
 Constraints

 300 300 users 
 Canal indoor (Office LOS)
 Ah hoc network self organizing (using localization) Ah hoc network self organizing (using localization)
 50 cm between seat rows, 70 cm large seat
 Frequency >5 GHz
 Smart antenna
 Expected throughput ~1Mbit/s at least

Wi l COTS l ti t b d l d i i ft Wireless COTS solutions cannot be deployed in an aircraft
 Problems of frequency, availability and efficiency with such 

a n mber of nodes in s ch a small area aircraft passengera number of nodes in such a small area - aircraft passenger 
cabin
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Cyber-physical AeronauticCyber physical Aeronautic 
Systems requirements
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Cyber-physical Aeronautic Systems 
i trequirements

 Low cost, low power, small size, simplicity, high p p y g
number of nodes

 Application dependent constraints Application dependent constraints
Data rate
Radio range
BER
Spectrum occupation
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OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer :digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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Proposed solutionsoposed so ut o s
 Active Wireless Sensors Networks  cyber-physical y p y

systems
 Gathering physical information 

 Application specific hardware  reconfigurability (physical layer 
and antenna)

 New Services are needed
Synchronization
Time stampTime stamp
Localization
Safety, security

 Cross-layering between low network levels (PHY and MAC) and 
high network levels (routing)
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Research fieldsResearch fields
 Physical layer: SoC

 IR-UWB
 MB-OFDM (see our papers at ICONS 2009 and 2010)
 6 - 8,5 GHz and  60 GHz band
 CMOS  IC design
 Smart antenna Smart antenna

 Beam-forming using phase shifter

 MAC layer and synchronization

 Simulator for WSN
 Network topology
 MAC layer MAC layer

 Cross-layering 
 Take benefit of the highly reconfigurability of lower layers to the high layers
 uP integration – routing, SoC approach

 Focus on flexible substrate integration
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OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer :digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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Proposed network architectureProposed network architecturepp

Aircraft Network

Wireless Sensor nodes

Routers

Central computer 
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Network architecture

 Flexible substrate architecture for the nodes
 Low power transceiver integrated on flexible substrate together 

with the sensor and the antenna

 3D integration with smart antenna for the routers for 3D integration with smart antenna for the routers, for 
example, in SHM applications

Antenna

Sensor

Antenna

ANR NanoInnov – NanoComm Project
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OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer : digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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The advantages of The advantages of UWBUWB--IRIRe ad a tages oe ad a tages o UU
 Low level discontinue transmission 

 Low power transmission
 Large frequency band
 Very short pulse Very short pulse
 Lower interference probability
 Fine temporary resolutionp y

Localization
 Low complexity circuits to be developed in CMOS technology 

low cost, low power
 Challenges :

 Channel estimation
 Fast DAC/ADC
 Reception synchronization Reception synchronization
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IR-UWBIR UWB

 IR-UWB IR UWB

Emitter – receiver architecture
Mostly Digital architecture  high reconfigurability
Mixed architecture : digital – analog RF front end  60GHz

High data rateHigh data rate 
 channel capacity  directive antenna and 60GHz
 transceiver architecture

BER
MAC layer for IR-UWB
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FPGA prototypesp yp

 IR-UWB multi user emitter and IR UWB multi user emitter and 
receiver

 IR UWB receiver with localization IR-UWB receiver with localization
function

f IR-UWB reconfigurable transceiver in 
modulation, pulse duration, spectral 
occupation, data rate and user code

 IR-UWB reconfigurable transceiver at 
120Mb/s – state of art: 50Mb/s 
(Electronics Letters, March 2010)
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ASICs - emitter UWB-IRASICs emitter UWB IR
 Impulse radio UWB emitter – CMOS 65 nm STMicroelectronics 

technology
 Low complexity digital design : fast and reliable
 1st prototype : without DAC, 1 bit output, OOK modulation
 2nd prototype: reconfigurability in data rate, modulation, impulse 

forme, impulse duration. Data rate up to 1Gbps
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UWB IR emitter performancesUWB IR emitter performances

Ground – Signal – Ground :

Clock input

M d lt
470 µm

Measured results :

Data rate : 8 to 375 Mbits/s

Tp : 20 ns to 720 ps

770 µm

Ground and 
core supplies

Ground and 
core supplies 

and reset

Tp : 20 ns to 720 ps

Consumption: 60 µW to 515µW

FOM: 7 23 to 1 4 pJ/bit
Ground – Signal – Ground :

IR-UWB emitter output

ICONS 2010
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UWB-IR @ 60GHzUWB IR @ 60GHz

digital
ASIC DSP

SoC

A t A
D

AAnalog / RF
Digital

RF MEMS 

Antenna Array

Ф
… RFIC (CMOS)

Phase shifters
PA

60 GHz 
Oscillator

Ф

Phased Antenna 

Baseband/MAC

Array
Modeling of entire heterogeneous 

system by connection of blocks described in VHDL-AMS
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Advantages of this modeling approachAdvantages of this modeling approach

 Easily scalable in function of the design schema of 
the oscillator

 Easily scalable in function of the technology (SiGe, 
Si, BiCMOS, CMOS, CMOS SOI)

 Published in IEEE Transaction on MTT, April 2009
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Low power CMOS ASICs @ 60GHzp @

T h l CMOS 65Technology : CMOS 65nm
LNA, VCO and mixer @ 60GHz

Inductances 60GHz : 50pH – 300pH
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LowLow power CMOS LNA @60GHzpower CMOS LNA @60GHzLowLow power CMOS LNA @60GHzpower CMOS LNA @60GHz

V=1.5V V=1V
GT=22 4dB GT=18 7dBGT 22.4dB GT 18.7dB 

P-1dB= -3.4dBm         P-1dB= -6.5dBm
Power consumption:

P=16,8mW P =8,5mWP 16,8mW P 8,5mW

IEEE APMC dec. 2009



High power efficiency CMOS VCO @60GHzHigh power efficiency CMOS VCO @60GHzg p y @g p y @

Measured single-ended VCO output at 1 
V/16.5mA bias, Vcontrol = 0 VP out diff/ PDC = 3.65 



MEMS RF and Phase shifters 
@60GHz for smart antenna 
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Smart antenna : reconfigurable circuits @ 
60GHz60GHz

 Reconfigurable antenna in emission diagram and pointing direction.

         

MEMS RF circuits

Solid state circuits

New architecture for reconfigurable antenna: excellent linearity, variable power, 
integration with the antenna possible

ICONS 2010
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MEMS @ 60GHz

Pont

 MEMS RF

Pont

 Capacitive switch
IN OUT

Electrode d’activation

Masse

CPW 50 Ω
Dielectric (SiN)

Gold 
(Bridge
)

Electrode d activation

BCB (20µm)

HR 
Si Gold 

(Si l)
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RF MEMS up to 94GHz in LAAS-CNRS 
t h ltechnology

M1 M2 M3 M4 M5M1
(20‐GHz MEMS)

M2
(35‐GHz MEMS)

M3
(60‐GHz MEMS)

M4
(77‐GHz MEMS)

M5
(94‐GHz MEMS)

IEEE Transaction on MTT in November 2009
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Applications: 60-GHz Phase Shifters
 Two versions of 1-bit phase shifters

Applications: 60 GHz Phase Shifters

 loaded-line /          switched-line

 At 60 GHz
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Fabricated Phase Shifter @ 60GHz@
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System integrationSystem integration
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Above IC – antenna integrationAbove IC antenna integration
Contact PadsContact Pads

Antenna

Antenna on test wafer SiGE Transceiver and 3D integrated antennaAntenna on test wafer

Collaboration with Toronto University: Prof. Sorin Voinigescu team
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Flexible substrate integrationg

 Work in progress Work in progress
 Substrate choice – Kapton 100HN

Ch ll Challenges:
 Antenna design

Chi t ll d
Antenna

 Chip report, very small pads
 Process has to stay low 

temperature to not destruct the

Sensor

temperature to not destruct the 
chip

 60GHz integration 60GHz integration
 Sensor on the same substrate
 Battery integration Battery integration
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VCOFlexible substrate integration
Capa CMS

LNA

Cal_Kit

LNA_Test

Daisy chainDaisy chain
+

Four point probe

LED+Battery



OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer :digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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MAC layer and SYNCRONIZATIONMAC layer and SYNCRONIZATION
Cross-layering

ICN 2010 paper
T.Beluch, D. Dragomirescu and al. “Cross-layered
Synchronization Protocol for Wireless Sensor
Networks”Networks



Synchronization for real time wireless Synchronization for real time wireless 
measurementmeasurementmeasurementmeasurement

 Context: Context:
 Static cluster tree network
 < 1us synchronization requiredy q

 Solution:
Deterministic TDMA
WiDeCS Sync Protocol – LAAS-

CNRS solution
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Router Router -- nodes communication and nodes communication and 
synchronization synchronization synchronization synchronization 

Router
Node 1

Node 2

Node 3
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OutlineOutline

 Objectives and specifications of cyber-physical systems for
aeronautic applications

 Proposed solutions
 Network architectures
 Physical layer :digital base band, RF front end, frequency choice,

smart antenna and integration – SoC approachsmart antenna and integration SoC approach
MAC layer and synchronization
Wireless Sensor Network simulator for aeronautic applications

taking into account our hardware solutions
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WSN simulator using UWB-IR 
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WSN using IR-UWBWSN using IR-UWB
 Objectives:j

 Predict the behavioral of a complex system with a high number of 
nodes 

 Determine the best network topology Determine the best network topology
 Impact of IR-UWB at network level :

Collisions
Power consumption
Simplicity

 Taken into account the specificity of IR UWB physical layer in Taken into account the specificity of IR-UWB physical layer in 
a network simulator

Discontinue emissionDiscontinue emission
BER
Simplicity of MAC layer using IR-UWB

ICONS 2010
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Simulator structure

Network simulator Behavior of physical layer IR-UWB is 
characterized via BERcharacterized via BER

Simulation BER measurementsSimulation
Matlab on

our transceivers

10-1

100

Non-coherent OOK versus coherent PPM in UWB residential LOS channel:
BER versus Eb/N0 over 100000 bits.

 

Glomosim :

4

10-3

10-2

B
it 

E
rro

r R
at

e 
: B

E
R

Coherent PPM : Dbl Exp Plus Const Fit
Non-coherent OOK : Poly Ratio Fit
Coherent PPM : Empirical BER
Non-coherent OOK : Empirical BER

1. Determine the power level 
received by the receiver

2 C lt th BER i t d

40 30 20 10 0 10 20 30 40
10-6

10-5

10-4

 

2. Consult the BER associated

3. Determine via the PER if the PDU 
is received or non
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Wireless Sensors Networks Simulator

Work in progress
 Qualnet Software Qualnet Software

 Real-time Simulation.
 Designed for parallel execution
 Packet tracerac et t ace
 3D Visualization tool
 Directive antenna included 
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ConclusionCo c us o
 Cyber Physical System solution proposed for Aeronautic 

applications :applications :

 SoC Architectures -3D integration or flex substrate integration
 UWB IR reconfigurable emitter and receiver developed on FPGA UWB –IR reconfigurable emitter and receiver developed on FPGA
 Impulse radio UWB emitter on ASIC developed  very low power
 60GHz architectures in progress on ASIC
 VHDL AMS d l f RF f t d bl d MEMS RF h VHDL-AMS models for RF front–end blocs and MEMS RF phase 

shifters toward a SoC modeling
 60GHz MEMS RF designed and fabricated in LAAS technology
 60GH h hift li d d d 60GHz phase shifter realized and measured
 Cross-layering  MAC –PHY
 Synchronization
WSN simulator using UWB-impulse radio developed  determine 

the best network topology for one application
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Thanks to WSN TeamThanks to  WSN Team
 Professor : Daniela Dragomirescu (Assoc. Prof)
 Post doc Ph D students engineers Master students Post-doc, Ph.D. students, engineers, Master students

 Vincent Puyal – post-doc – MEMS RF and phase shifter design
 Christina Villeneuve – post-doc – clean room technology for MEMS RF
 Mehdi Jatlaoui – post-doc – flexible substrate integrationp g
 Samuel Charlot – research engineer - flexible substrate integration
 Anthony Coustou – research engineer – CAD support  and RF circuits design
 Frederic Camps – research engineer – WSN simulator
 Aubin Lecointre Ph D student PHY and MAC layer for IR UWB systems Aubin Lecointre – Ph. D student – PHY and MAC layer for IR-UWB systems
 Michael Kraemer –Ph.D student – 60GHz transceiver design and system modeling 

in VHDL-AMS
 Julien Henaut – Ph.D. student – OFDM systems
 Ali Kara Omar – Ph.D. student – RF transceiver @ 5GHz
 Abdoulaye Berthe – Ph.D student – Mac layer
 Thomas Beluch – Ph.D. student – MAC and synchronization protocol, low power 

transceivers
 Mariano Ercoli –Ph.D. student - 60GHz transceiver design 
 Raphael Tocque – engineer – system modeling in VHDL-AMS
 Florian Perget –Master student- MAC with beamforming algorithms
 Stephane Coppola Master student phase shifter design
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 Further information and publications are available on ourp

Website :
www.laas.fr\~daniela
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Thank you for your attention !

Questions ?Questions ?
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